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Abstract—Interconnection networks based on the fat-tree
topology are widely used in high-performance parallel super-
computers. In a classical fat-tree, the radix of root switches is
less than that of other switches. Fat-tree is a folded version of a
Clos network. A Clos network uses the same radix switches in all
stages. However, fat-tree or Clos network has a high switch cost
and great packet latency. This paper proposes a variant of the fat-
tree, named Mirrored k-ary n-tree (MiKANT), that doubles the
number of compute nodes of the fat-tree by adding a few switches
and making all the switches have a same radix. Compared
to the classical fat-tree and Clos network, MiKANT not only
reduces the numbers of switches and links so that it can be
implemented at lower hardware cost, but also makes the network
average distance shorter for achieving higher communication
performance. We describe the structure of MiKANT, examine
its topological properties, give a minimal per-hop deterministic
routing algorithm, and evaluate the cost performance. Our results
show that MiKANT reduces the average distance by about
0.5, saves 6.3% to 25.0% links and 12.5% to 50.0% switches,
and improves performance of 9.1% to 41.4%, compared to the
classical fat-tree, when n is in the range of 2 and 8. Our
simulation results also show that MiKANT achieves much lower
average packet latencies than the Clos network.

Index Terms—interconnection network, fat-tree, k-ary n-tree,
switch, diameter, radix, routing algorithm, packet latency, cost
performance evaluation

I. INTRODUCTION

The fat-tree [1] is one of the most commonly used topolo-

gies of the interconnection networks in commercial super-

computers. Unlike the traditional tree structure, fat-tree has

a structure similar to the actual tree. In other words, fat-tree

gets fatter (thicker) near the root. Compute nodes are attached

only to the switches of the leaf stage (other stages contain

only switches). In the fat-tree with a one root, the number of

ports of the switches increases as the stage goes toward the

root. To keep a fixed switch radix, some fat-tree alternatives

which have multiple roots were proposed. Furthermore, to

parameterize the multiple-root fat-trees, Petrini and Vanneschi

proposed a k-ary n-tree [2], where k is the arity or the number

of links of a switch that connects to the previous or next stage;

i.e., the switch radix is 2k, and n is the number of stages.

Qian et al. presented routing algorithms in fat-tree data center

network [3].

The fat-tree is a folded version of a Clos network [4] which

was originally designed for non-blocking telecommunication

circuit switching. Clos network is a multistage interconnection

network (MIN) that uses small-scale crossbar as the building

blocks. MIN showed that it outperforms a single large-scale

crossbar when the number of nodes becomes large, because in

the crossbar, the number of crosspoints increases quadratically

with the number of ports. Google has adopted the Clos

network in its data center network architecture design [5].

Fat-tree and Clos network provide high path diversity but

meanwhile require a higher number of switches with a non-

negligible wiring complexity and have a greater packet latency

than other low cost MINs. The increased switch cost and

packet latency both stem from the need to route packets first

to an arbitrary middle stage or root switch and then to their

ultimate destination [6].

In order to reduce the hardware cost of the switches, Gómez

et al. proposed a reduced unidirectional fat-tree (RUFT) [7],

[8]. Because the links in RUFT are unidirectional, all packets

must traverse from the first stage switches to the last stage

switches and then traverse back to the compute nodes along

with long links. Ludovici et al. showed that RUFT is a

more powerful alternative than the traditional Butterfly for the

implementation of the network-on-chip (NoC) [9]. Wang et al.

pointed out that the floorplan design of the fat-tree-based NoC

is very challenging because of the complexity of topology, and

proposed a method to optimize the fat-tree floorplan which

can effectively reduce the number of crossings and minimize

the interconnect length [10]. Navaridas et al. proposed a thin

tree [11] that removes some switches and links from the k-ary

n-tree, for reducing the hardware cost of the switches.

The main contribution of this paper is to propose a Mirrored

k-ary n-tree (MiKANT) to reduce the complexity of the fat-

tree by connecting more compute nodes with less switches

and links, and as a result, to reduce the hardware cost and

to make it easier to be implemented than the fat-tree and

bidirectional Clos network. Meanwhile, MiKANT shortens

the average distance to reduce the communication time for

achieving high performance. We also give a minimal per-hop

deterministic routing algorithm and a method to determine the

values of k and n for a given system size. Our analytical and

synthetic simulation results show that MiKANT outperforms

the classical k-ary n-tree and Clos network, in terms of

hardware cost, average distance, and average packet latency.



Fig. 1. A classical 3-ary 3-tree

Fig. 2. A bidirectional Clos 3-ary 3-tree

The rest of the paper is organized as follows. Section II

describes the structure of MiKANT. Section III examines its

topological properties. Section IV proposes a minimal per-hop

deterministic routing algorithm. Section V evaluates the cost

performance by the analytical and synthetic simulations. And

Section VI concludes the paper.

II. MIRRORED K-ARY N-TREE

MiKANT is motivated from the classical k-ary n-tree and

Clos k-ary n-tree. The classical k-ary n-tree is a special case

of fat-trees. The number of stages of the classical k-ary n-

tree is n and in each stage, there are kn−1 switches. This

also means that there are kn−1 roots. k compute nodes are

attached to each switch in the leaf stage. The total number

of nodes is kn−1× k = kn. The diameter is 2n, including the

distance between switch and compute node. Fig. 1 shows a

classical 3-ary 3-tree where the rectangles represent switches

and the circles represent compute nodes. There are kn = 27
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Fig. 3. A Mirrored 3-ary 3-tree

nodes and nkn−1 = 27 switches. In the classical k-ary n-tree,

switches in the root stage have less ports than other switches.

For example, the switches in the top row of Fig. 1 are radix-3

and the others are radix-6.

A Clos network [4] consists of an odd number of stages.

Particularly, a Clos k-ary n-tree has 2n− 1 stages and each

stage has kn−1 switches. The original Clos network uses uni-

directional channels. An injection port and an ejection port are

connected to a same physical terminal node. Fig. 2 illustrates a

bidirectional Clos 3-ary 3-tree that uses bidirectional channels,

and the nodes on the top and bottom are distinct.

A Mirrored k-ary n-tree, denoted as MiKANT(k, n), has

2n−2 stages; there are kn−1 switches in each stage; and each

switch has 2k bidirectional ports.

Each switch is labeled as 〈G,L,D〉, where G indicates

the group with G ∈ {0, 1}, L (level) indicates the stage with

L ∈ {0, . . . , n− 2}, and D =Dn−2, Dn−3, . . . , D1, D0 is an

(n−1)-tuple {0, 1, ..., k−1}n−1 which identifies the switches

inside stage L of group G. A switch

〈G,L,Dn−2, . . . , DL+1, DL, DL−1, . . . , D0〉

will connect to switches

〈G,L+1, Dn−2, . . . , DL+1, ∗, DL−1, . . . , D0〉

if 0≤ L≤ n− 3; otherwise (L= n− 2) to switches

〈G,L, ∗, Dn−3, . . . , D1, D0〉

where ∗ ∈ {0, 1, . . . , k− 1} and G is the bit-inversion of G.

Because we define the stage L as 0 ≤ L ≤ n− 2, we discuss

MiKANT(k, n) with a restriction of n ≥ 2. For n = 1, there

is only one switch and 2k compute nodes are connected to

the switch. For example, a stage 2 switch of group 0 w =
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Fig. 4. A Mirrored 3-ary 4-tree

〈0, 2, 0, 0, 0〉 in a MiKANT(3, 4) (k = 3 and n= 4) connects

to switches 〈1, 2, 0, 0, 0〉, 〈1, 2, 1, 0, 0〉, and 〈1, 2, 2, 0, 0〉 for

L= n− 2= 2; and the following three switches connect to w:

〈0, 1, 0, 0, 0〉, 〈0, 1, 0, 1, 0〉, and 〈0, 1, 0, 2, 0〉 for L= 1.

Each compute node is defined as 〈G,C〉, where G is the

group with G ∈ {0, 1}, and C = Cn−1, Cn−2, . . . , C1, C0 is

an n-tuple {0, 1, ..., k− 1}n. There is a link between a switch

〈G, 0, Dn−2, . . . , D1, D0〉

and a compute node

〈G,Cn−1, Cn−2, . . . , C1, C0〉

if Di = Ci for all i ∈ {n− 2, ..., 1, 0}.

Fig. 3 shows a MiKANT(3, 3). There are 2(n− 1) = 4
stages and each stage has kn−1 = 9 switches. The upper two

stages are of group 1 and lower two stages are of group 0.

The number of compute nodes is 2kn = 54. Compared to the

bidirectional Clos 3-ary 3-tree, shown in Fig. 2, which also has

54 nodes, MiKANT(3, 3) removed the center stage switches.

The number of switches is decreased from 45 to 36. Compared

to the classical 3-ary 3-tree, shown in Fig. 1, which has 27

nodes and 27 switches, MiKANT(3, 3) doubles the number of

nodes but only adds 9 switches. We can also see that the group

0 and the stage 1 switches of group 1 form a classical 3-ary

3-tree; and the group 1 and the stage 1 switches of group 0

form another classical 3-ary 3-tree.

Fig. 4 shows a MiKANT(3, 4). There are 2(n− 1) = 6
stages and each stage has kn−1 = 27 switches. The number

of compute nodes is 2kn = 162. In contrast, the Clos 3-ary

4-tree has 7 stages.

Generally, MiKANT consists of an even number of stages.

The switches in stage n− 2 of group 1 can be considered as

the root switches of group 0; similarly, the switches in stage

n− 2 of group 0 can be considered as the root switches of

group 1. That is, the switches in the center two stages are

shared by the two classical k-ary n-trees.

Although MiKANT(k, n) reduced switches and links, when

the source node and destination node are of a same group

(group 0 or 1), MiKANT(k, n) acts as the same as k-ary n-

tree (fat-tree). This keeps the non-blocking property of the fat-

tree. On the other hand, when the source node and destination

node are of distinct groups, MiKANT(k, n) reduces both the

path length and path diversity. Reducing path diversity will

lose the non-blocking property but there are still multiple

paths between the source and destination nodes. For some

applications, there will be few performance drawbacks. Note

that even in this case, we can also route a packet first to an

arbitrary root switch of the destination node and then to the

ultimate destination node.



III. TOPOLOGICAL PROPERTIES OF MIKANT

This section gives topological properties of MiKANT(k, n).

Theorem 1: The switch radix of MiKANT(k, n) is 2k.

Proof: (1) The switch 〈G, 0, Dn−2, . . . , D1, D0〉 in

stage 0 has k links connecting to compute nodes and

k links connecting to switches 〈G, 1, Dn−2, . . . , D1, i〉 in

stage 1 with 0 ≤ i ≤ k − 1. (2) The switch 〈G,n −
2, Dn−2, Dn−3, Dn−4, . . . , D0〉 in stage n− 2 has k links

connecting to switches 〈G,n − 2, i, Dn−3, Dn−4, . . . , D0〉
with 0 ≤ i ≤ k − 1 and there are k links con-

necting to switches 〈G,n − 3, Dn−2, i, Dn−4, . . . , D0〉 in

stage n − 3 with 0 ≤ i ≤ k − 1. (3) The switch

〈G,L,Dn−2, . . . , DL+1, DL, DL−1, DL−2, . . . , D0〉 in stage

L (L 6= 0 and L 6= n− 2) has k links connecting to switches

〈G,L + 1, Dn−2, . . . , DL+1, i, DL−1, DL−2, . . . , D0〉 with

0 ≤ i ≤ k − 1 and there are k links connecting to switches

〈G,L − 1, Dn−2, . . . , DL+1, DL, i, DL−2, . . . , D0〉 in stage

L−1 with 0≤ i≤ k−1. Therefore the radix of MiKANT(k, n)

is k+ k = 2k.

Theorem 2: The diameter of MiKANT(k, n) is 2n.

Proof: The diameter is defined as the maximum distance

of the shortest-path between any two nodes. We count the

distance from a node to its connected switch as a 1. In

MiKANT(k, n), the longest shortest-path is the path between

two nodes of a same group and their nearest common an-

cestor (NCA) is located in the stage n − 2 of the other

group. The one-way distance between a node to the NCA

is 1 + (n− 2) + 1. The first 1 is the distance between the

node and its connected switch in stage 0; n− 2 is the distance

between the switch in stage 0 and the switch in stage n− 2
of the same group; and the last 1 is the distance between the

stage n− 2 switch and the NCA. Therefore, the diameter is

2(1+ (n− 2)+ 1)= 2n.

Theorem 3: There are (2n − 2)kn−1 switches in

MiKANT(k, n).

Proof: The switch ID in stage L of group G is

〈G,L,Dn−2, . . . , DL+1, DL, DL−1, . . . , D0〉. The value of

each Di can be 0, 1, . . . , k− 1 for i = 0, 1, . . . , n− 2. This

means that the number of switches in one stage of group

G is kn−1. There are two groups (0 ≤ G ≤ 1) and each

group has (n− 1) stages (0 ≤ L ≤ n− 2). Therefore, there

are 2(n− 1)kn−1 switches in MiKANT(k, n).

Theorem 4: There are 2kn nodes in MiKANT(k, n).

Proof: Because a stage 0 switch 〈G, 0, Dn−2, . . . ,
D1, D0〉 of each group has k nodes connected, and there are

kn−1 such switches in each group, the total number of nodes

is 2× kn−1× k = 2kn.

Theorem 5: There are (2n− 1)kn links in MiKANT(k, n).

Proof: The number of links here contains also the links

connecting nodes and switches. Within each group, there are

n− 1 stages and kn−1 switches in each stage. Each switch

contributes k links. Therefore, there are (n− 1)×kn−1×k =
(n− 1)kn links inside a group. Also, there are kn−1×k= kn

links that connect switches of distinct groups. Therefore, the

total number of links in MiKANT(k, n) is 2(n− 1)kn+ kn =
(2n− 1)kn.

Theorem 6: The average distance D̃m of MiKANT(k, n) is

2n− 1/(k− 1)+ 1/((k− 1)kn)− 1/2.

Proof: The average distance of MiKANT(k, n) can be

calculated as below. For n≥ 2, each node has k− 1 nodes at

distance 2, k2 − k nodes at distance 4, . . ., kn − kn−1 nodes

at distance 2n, of the same group, and kn nodes at distance

2n− 1 of different groups. That is, the average distance

D̃m = [

n∑

i=1

2i(ki− ki−1)+ (2n− 1)kn] / (2kn)

= 2n−
1

k− 1
+

1

(k− 1)kn
−

1

2
(1)

In contrast, the average distance of the bidirectional Clos

k-ary n-tree is

D̃s = 2n−
1

k− 1
+

1

(k− 1)kn
(2)

And the average distance of the classical k-ary n-tree is

D̃c = 2n−
2

k− 1
+

2

(k− 1)kn
(3)

Theorem 7: The bisection width of MiKANT(k, n) is kn/2.

Proof: The bisection width is defined as the smallest

number of links we have to cut in order to separate the

network into two parts of the same number of nodes. Here

we only take the case of even k to calculate the bisection

width. We divide MiKANT(k, n) into two parts A and B

in such a way that part A contains switches with IDs of

〈G,L,An−2, An−3, . . . , A1, A0〉 for 0 ≤ Ai ≤ k/2− 1 and

part B contains switches with IDs of 〈G,L,Bn−2, Bn−3, . . . ,
B1, B0〉 for k/2≤Bi ≤ k− 1. Then only the links in between

stage n−2 of group 0 and stage n−2 of group 1 may connect

switches of part A and switches of part B. The number of

such links is k/2×kn−1 where the last term is the number of

switches in a stage, and the first term, k/2, indicates that for

one switch, there are half links connecting to switches of the

different part. Therefore, the bisection width of MiKANT(k, n)

is k/2× kn−1 = kn/2.

Note that the bisection width of MiKANT(k, n) is less than

the number of links in between group 0 and group 1 which is

k×kn−1 = kn. Table I summarizes the topological properties

of classical k-ary n-tree, bidirectional Clos k-ary n-tree, and

MiKANT(k, n). From the table, we know that the proposed

MiKANT(k, n) has less switches, less links, and less average

distance than other two networks for the same number of nodes

in the networks.

IV. ROUTING ALGORITHM FOR MIKANT

There are many routing algorithms for traditional k-ary n-

trees. The basic idea is to find an NCA of both the source

and destination nodes. In the phase of routing from the source

node to the NCA, there are several paths. The adaptive routing

algorithms only focus on the path selection in this phase. After

that, the routing path from the NCA to the destination node

is deterministic.



TABLE I
COMPARISON OF TOPOLOGICAL PROPERTIES

Classical k-ary n-tree Clos k-ary n-tree Mirrored k-ary n-tree

Number of nodes kn 2kn 2kn

Number of switches nkn−1 (2n− 1)kn−1 (2n− 2)kn−1

Number of links nkn 2nkn (2n− 1)kn

Radix 2k 2k 2k
Diameter 2n 2n 2n
Bisection kn/2 kn/2 kn/2

Average distance 2n−
2

k− 1
+

2

(k− 1)kn
2n−

1

k− 1
+

1

(k− 1)kn
2n−

1

k− 1
+

1

(k− 1)kn
−

1

2

In this section we give a minimal per-hop deterministic rout-

ing algorithm based on the ID definition of MiKANT(k, n).

Our algorithm finds a routing path with the minimal num-

ber of switches. The output port in each switch is se-

lected based on the IDs of the current switch and destina-

tion node. Suppose that a source node S is represented by

S = 〈GS , Sn−1, Sn−2, . . . , S1, S0〉. It wants to send a packet

to a destination node T , represented by T = 〈GT , Tn−1,
Tn−2, . . . , T1, T0〉. First, S will send the packet to the switch

〈GS , 0, Sn−2, . . . , S1, S0〉, and finally, T will receive the

packet from the switch 〈GT , 0, Tn−2, . . . , T1, T0〉.
In the phase of going to the NCA, a switch W in stage LW

W = 〈GW , LW ,Wn−2, . . . ,WLW+1,WLW
, TLW−1, . . . , T0〉

sends the packet to a switch U which is closer to T than W

U = 〈GU , LU ,Wn−2, . . . ,WLW+1, TLW
, TLW−1, . . . , T0〉

where WLW
is changed to TLW

. That is, we change

Sn−2, . . . , S0 as quickly to Tn−2, . . . , T0 as possible, in the

field sequence of 0, 1, . . . , n− 2. In the phase of going to the

destination switch from the NCA, the path is deterministic.

There are 2k ports in a switch. We use a number in the

range of 0 and 2k− 1 as the port label (see Fig. 3). The port

labels of k to 2k− 1 are assigned for the phase of going to

the NCA, and port labels of 0 to k− 1 are assigned for the

phase of going to the destination node from the NCA. The

switch controller should determine which port will be used for

sending the packet, based on its switch ID and the destination

information in the received packet.

The routing algorithm for each switch W = 〈GW , LW ,
Wn−2, ...,W1,W0〉 is formally given in Algorithm 1, where

T+

LW
is the port label of switch W that is linked to a switch

whose stage equals LW +1 (increasing stage); its value equals

the destination field TLW
+k. Similarly, T−

LW
is the port label

of switch W that is linked to a switch whose stage equals

LW − 1 (decreasing stage); its value equals the destination

field TLW
(see also Fig. 3).

Through T+

LW
port, the packet is sent to the NCA of the

source node and destination node. Through T−

LW
port, the

packet is sent toward destination node from the NCA. In this

phase, because the fields Wn−2, . . . ,W1,W0 are already equal

to Tn−2, . . . , T1, T0, the work is only to decrease the stage. In

the last step, the packet is sent by the switch in stage 0 to the

ultimate destination node through the T−

n−1 port. Note that

Algorithm 1 MiKANT Routing (packet)

Input: packet = 〈T, data〉; /* received packet which will be sent to T */

T = 〈GT , Tn−1, Tn−2, ..., T1, T0〉; /* destination node ID */

W = 〈GW , LW ,Wn−2, ...,W1,W0〉; /* my switch ID */

if (GW 6=GT ) /* W,T : different groups */

send packet to T+

LW
port; /* increasing stage */

else /* W,T : same group */

if (Wn−2, ...,W0 6= Tn−2, ..., T0) /* going to NCA */

send packet to T+

LW
port; /* increasing stage */

else /* going to destination from NCA */

if (LW 6= 0) /* not a stage 0 switch */

send packet to T−

LW
port; /* decreasing stage */

else /* a stage 0 switch */

send packet to T−

n−1
port; /* to destination node */

endif

endif

endif

TABLE II
ROUTING EXAMPLES IN MIKANT(3, 4)

GT 6=GS GT =GS GT =GS GT =GS

S 〈0, 2, 0, 0, 0〉 〈0, 2, 0, 0, 0〉 〈0, 2, 0, 0, 0〉 〈0, 2, 0, 0, 0〉

〈0, 0, 0, 0, 0〉 5 〈0, 0, 0, 0, 0〉 〈0, 0, 0, 0, 0〉 〈0, 0, 0, 0, 0〉

S
w

itch
es

〈0, 1, 0, 0, 2〉 5 〈0, 1, 0, 0, 2〉 〈0, 1, 0, 0, 2〉 〈0, 1, 0, 0, 2〉
〈0, 2, 0, 2, 2〉 5 〈0, 2, 0, 2, 2〉 〈0, 2, 0, 2, 2〉 〈0, 0, 0, 0, 2〉
〈1, 2, 2, 2, 2〉 2 〈1, 2, 2, 2, 2〉 〈0, 1, 0, 2, 2〉
〈1, 1, 2, 2, 2〉 2 〈0, 2, 2, 2, 2〉 〈0, 0, 0, 2, 2〉
〈1, 0, 2, 2, 2〉 2 〈0, 1, 2, 2, 2〉

〈0, 0, 2, 2, 2〉

T 〈1, 2, 2, 2, 2〉 〈0, 2, 2, 2, 2〉 〈0, 2, 0, 2, 2〉 〈0, 2, 0, 0, 2〉

T−

LW
∈ {0, 1, . . . , k − 1} and T+

LW
∈ {k, k+ 1, . . . , 2k− 1}.

This minimal per-hop deterministic routing algorithm is quite

simple and can be implemented with a simple fixed logic to

determine the output port. It is deadlock free for the collective

communications.

Table II shows four routing examples in MiKANT(k, n)

with k= 3 and n=4, based on Algorithm 1. S and T are the

source and destination nodes, respectively. The others in the

center part are switch IDs. The first example shows the routing

path between S and T whose groups are different. The number

next to the switch label is the label of the used port (see Fig. 4).

The path length is 2n− 1 = 7. The second example shows the

routing path between S and T whose groups are the same. The

path length equals the diameter which is 2n = 8. The other

two examples show short paths in the case that S and T are

in the same group.
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V. COST PERFORMANCE EVALUATION

This section examines the ratios of the switches and links

which the MiKANT can reduce, evaluates the performance

improvement compared to the classical k-ary n-tree, describes

how to determine the values of k and n for a given node

size N , and shows the average packet latencies through event

simulations.

A. Analytical Evaluation

The classical k-ary n-tree has kn nodes and uses nkn−1

switches. On average, one node requires nkn−1/kn switches.

MiKANT(k, n) has 2kn nodes and uses (2n − 2)kn−1

switches. The switch cost ratio of MiKANT(k, n) to the

classical k-ary n-tree is

RS =
(2n− 2)kn−1/(2kn)

nkn−1/kn
= 1−

1

n
(4)

Similarly, the link cost ratio of MiKANT(k, n) to the classical

k-ary n-tree is

RL =
(2n− 1)kn/(2kn)

nkn/kn
= 1−

1

2n
(5)

Fig. 5 plots these ratios. When n= 2, MiKANT(k, n) saves

50% switches and 25% links; when n = 8, MiKANT(k, n)

saves 12.5% switches and 6.25% links.

In most literature, as one of the network topological proper-

ties, the cost is simply defined as the product of the radix and

diameter. Decreasing radix will reduce the hardware cost, and

decreasing diameter will shorten the communication time and

hence improve performance. We compare the cost performance

of MiKANT(k, n) to classical k-ary n-tree under the condition

of the same number of compute nodes for two networks.

MiKANT(km, n) has 2knm nodes; the radix is 2km; and the

diameter is 2n. Suppose that we build a classical kc-ary n-

tree that also has 2knm nodes under a given same n, then

we have knc = 2knm, or kc = 21/nkm. The cost performance

improvement is

S =
2kc× 2n

2km × 2n
= 21/n (6)

Fig. 6 illustrates the cost performance improvement of

MiKANT(k, n) compared to the classical k-ary n-tree. When
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Fig. 6. Performance improvement of MiKANT(k, n)

n= 2, MiKANT(k, n) improves performance of 41.4%; when

n= 8, MiKANT(k, n) improves performance of 9.1%.

If we want to build a MiKANT(k, n) with a given number

of nodes N = 2kn, there is a question about how to determine

the values of k and n. Our goal is to enlarge the performance

at low hardware cost. To do that, we define a relative cost

performance (RCP) to the hypercube as following.

RCP =
2k× 2n

(log2(2k
n/p)+ p)× (log2(2k

n/p)+ 2)
(7)

where 2k is the MiKANT(k, n) switch radix which affects

the hardware cost; 2n is the diameter which affects the

communication performance; log2(2k
n/p) is the dimension

of the hypercube, and p is the number of ports in a router for

connecting compute nodes.

When we talk about topological properties of an m-

dimensional hypercube, or m-cube, we say that both its radix

and diameter are m. But in real implementations, there are

p ports in a router for connecting compute nodes. There-

fore, the real router radix is m+ p. Also, the diameter of

MiKANT(k, n), which is 2n, contains the links that connect

compute nodes to switches. To make a fair comparison, we

let the diameter of m-cube be m+2.

Fig. 7 plots the RCP of MiKANT(k, n) to hypercube for

2 ≤ n ≤ 8 with p = 1. For a given n, we change k to

implement the system with different sizes. The lower values

in the curves means that the systems can be constructed with

higher performance at lower hardware cost. If the value is less

than 1, we say that it is better than the hypercube. We can see

that each curve has a minimum RCP value at a horizontal

position which is the size of the system. This figure can help

us to determine the values of k and n for a given system scale.

For example, when we build a 524,288-node system, we can

let k = 8 and n= 6; the RCP is 0.457.

B. Synthetic Simulation

We have evaluated the average packet latencies of MiKANT

and bidirectional Clos network with k = 4 and n = 5 by the

proposed routing algorithm through event simulation. Both

networks have the same number of compute nodes which is

2kn = 2,048. The reason why select k = 4 and n= 5 is that
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the simulator needs to use a big amount of memory and we

did it in an ordinary personal computer.

The block diagram of the switch for the simulation is shown

in Fig. 8. There is an 8× 8 crossbar. The output port poi and

input port pii form a bidirectional channel i for 0≤ i≤ 7. Each

input port of the switch has a FIFO (first-in first-out) buffer

for queuing packets. The depth of the FIFO is two (packets).

In addition to the channels for packet exchanging, there are

eight bidirectional signals (“FIFO ready” signals in the figure)

that inform its neighbor switches of the feasibility of the

corresponding FIFO and get the FIFO state of the neighbor

switches. We need such one-hop FIFO state information for

sending packets to the next switch. Our switch can perform the

wormhole switching routing. We let the flit length be 32 bits

which can accommodate a destination node address. Because

the minimal per-hop deterministic routing algorithm is quite

simple, we assume that the switch controller can determine the

output port for the packet in the head of the FIFO buffer in one
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Fig. 9. 4-ary 5-tree average packet latencies

clock cycle once the address flit arrived (“Flits (destinations)”

signals in the figure). In this simulation, the arbitration for each

output port is performed in a random way, that is, on every

clock cycle, one packet is selected randomly from multiple

packets that are sent through the same output port (“Selection”

signals in the figure).

We perform the simulation on a clock cycle-by-cycle basis

and simulate two synthetic traffic patterns: uniform and bit-

inversion. In uniform traffic, packet destination addresses are

randomly assigned. In bit-inversion traffic, a compute node

sends all its packets to the node whose address is the bit-

inversion of the sending node address. We set traffic load λ
in the range of 0.05 and 1.00, stepped by 0.05. This means

that on every clock cycle, there are N ×λ compute nodes that

send packets to their destination nodes where N is the number

of compute nodes in the system. A congested network has

a big value of λ. For example, in the all-to-all personalized

communication, the λ equals 1.00. The simulation terminates

when at least 200 packets of each source node reached their

destinations. The calculation of the packet latency does not

contain those packets more than 200 for each source node.

Fig. 9 shows the simulation results for the bidirectional Clos

and Mirrored 4-ary 5-trees. The vertical axis represents the

average packet latency in clock cycles and the horizontal axis

represents the traffic load. Both networks have 2,048 compute

nodes. MiKANT has (2× 5− 2)× 45−1, or 2,048, switches

while bidirectional Clos network has (2× 5− 1)× 45−1, or

2,304, switches. We can see that MiKANT has lower average

packet latencies than the bidirectional Clos network in both

the traffic patterns.

From the figure, we understand that when the traffic load

is low, the latency for the uniform pattern is less than that for

the bit-inversion pattern. This is because the uniform traffic

contains short paths between the source and destination nodes,

and the conflicts on output ports are low. On the other hand,

as the traffic load becomes heavier, the bit-inversion pattern

gets lower latency than the uniform pattern, because the bit-

inversion pattern has fewer conflicts on switch output ports

than the uniform pattern, as shown as in Fig. 10. In the bit-
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inversion pattern, all the paths have the same length and are

well distributed.

Note that in our simulation, we ignored the signal propaga-

tion time on the links. Long link will result in long propagation

time. Because MiKANT has less links and shorter average

distance than the bidirectional Clos network, counting the

propagation time will make the performance of MiKANT even

better than the bidirectional Clos network.

Fig. 11 shows the ratio of the number of the packets

received, including the packets more than 200, to the number

of all the packets sent on every clock cycle. Fig. 12 shows the

average number of the packets received, including the packets

more than 200, per clock cycle. From these two figures,

we know that MiKANT and bidirectional Clos network have

no obvious difference on these two measures. This means

that the both networks have almost the same communication

capacities.

VI. CONCLUSIONS

Recent years, many supercomputers, including the data

centers, adopt the interconnection networks based on the fat-

tree and Clos topologies. The proposed MiKANT has almost

the same communication capacity as that of the classical fat-

tree and bidirectional Clos networks but MiKANT uses fewer

switches and links and has shorter average distance than those

two networks. The results of the analytical evaluation and

synthetic simulation show that MiKANT can reduce both

the hardware cost and average packet latency. This means

that MiKANT can achieve high communication performance

at low implementation cost. The future research work may

include the development of the adaptive routing algorithms

for MiKANT, fault tolerant routing in MiKANT, and imple-

mentation of MiKANT on NoC.
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